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Transverse Momentum Dependent distribution functions

PDFs

@ The spin structure of the nucleon can be described through
parton distribution functions (PDFs).

@ All the structure functions can be expressed by PDFs. For
example

Fi(x) =) ef(x), (1)

f(x) is the unpolarized PDF.

° Knowing the structure of the nucleon
= Knowing all the PDFs.

o Different factorizations lead to different PDFs.



Transverse Momentum Dependent distribution functions

TMDs

@ Collinear case: only the longitudinal momentum is considered,
characterized by a scaling variable x.

@ At leading twist, three PDFs are needed, f(x), g(x), h(x).

@ TMD case: the transverse momentum of the quarks is taking
into account, characterized not only by x, but also by k| .

o At leading twist, eight PDFs are needed.
6 T-even: fi(x, ki), gie(x, ki), gur(x ki),
hf(X7 ki), hi—L(Xa ki), hf_T(X7 ki),
2 T-odd: fi%(x, k1), hi(x, ki).

@ TMDs give a full 3-D picture of the structure of the nucleon.
@ Other framework: Generalized Parton Distributions (GPDs)...



Transverse Momentum Dependent distribution functions

Quark correlator

@ The quark-quark correlator (in the light-cone gauge):

dé—d? (Pt e— -
D(x.p1) = [ PR (PSIT0)u(0.6.€1)IPS). (2

Here we omit the gauge link due to the light cone gauge.

@ This correlator can be parametrized in a basis of Dirac
matrices.

1 e prpSt, -S
d(x,p1) = 5 {ﬂiﬁ —f7 TTTPT h, + (SL &1L — pTM u g1T> Vi,

T [$T’§+} L <5L hiy — 2 TA'/IST h%r) [PT’;,Z;]%
+i hf[Pg’Aﬁ*] }



Transverse Momentum Dependent distribution functions

Definition for TMDs

@ Using the trace of the correlator

df d2€ i(xPT e .
[r1 — — 26 Y SL i(xPTET—p€L)
0] _Tr(¢r)/2—/ 1673 e

x (PS[(0)r(0,67,€1)|PS). (4)

We can separate the terms from each other.
e Decomposing the traces of the correlator (for the T-even

TMD:s only)
ol = f, (5)
-S
q>[’Y+V5] _ 5||g1L+ pJ_M J-ng’ (6)
N
it . pi ) 2pi p’ _ p2 5U
olie" sl = Sim+S 7 hii + siLévaLthT. (7)



Transverse Momentum Dependent distribution functions

Transverse distributions

o We get the transverse TMDs (in Eq. (3)),
2)_/M iPTE"—p L €L)

1673
X (PS*|(0 )'UHVW(O §7,€1)IPSY), (8)
* de~d .
P ity [ EE e
x (PS*[1(0)io ™ y59(0,£,£1)|PS?), (9)
ded .
p/tlglh 0 2l)_/ 5167;L b
x (PSY[(0)io'*51(0,£7,£1)|PSY), (10)

|PSY): the hadronic state with a polarization in the y
direction.
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Transverse distributions

@ The hadronic state can be expanded in a series of light-cone
Fock states.

@ Probability interpretation:
hi(x, p?): find a transversely polarized quark inside a
transversely polarized nucleon carrying the fractional
momentum xP and the transverse momentum p ;
hﬁ(x, pf_): find a transversely polarized quark inside a
longitudinally polarized nucleon carrying the fractional
momentum xP and the transverse momentum p_;
hi(x,p?): find a transversely polarized quark along x axis
inside a transversely polarized nucleon along y axis carrying
the fractional momentum xP and the transverse momentum

Pl
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The light cone SU(6) quark-diquark model

SU(6) quark-diquark model

@ We use the light-cone SU(6) quark-diquark model, in which
the proton state is constructed by a valence quark and a
spectator diquark.

@ The proton state with a spin component S, = i% can be

written as
IpTy = 37\1/?@\/ [(ud)ouT — V2(ud) ut — V2(uu)dT + 2(uu)1dl} )+ %%(ud)suﬂ (11)
Iyt 01 17 0,1 “17 1 s |
p) = =5 5ev (W)t = V2(ud) " T — V2(uu)°d* + 2(uu) M + 5 es(ud)®ut (12)

@ The S, = j:% and S, = i% can be obtained by
1 o 1
Ty =531 +1ph), IxT) = S(1ph) —1p1). (13)
1 , 1 .
=y = 3061 +ilY), [y = 56"} — iloh).(14)



The light cone SU(6) quark-diquark model

Melosh-Wigner rotation

@ We need to transform the states from the instant form to the
light-front form.

@ instant frame — light-cone frame: a unitary Melosh-Wigner
rotation
H.J. Melosh, PRD 9, 1095 (1974); E. Wigner, AM 40, 149
(1939). B.-Q. Ma, JPG 17, L53 (1991).

@ Fora spin-% particle

(CI%):LU(/&Jer :kR )(q%)leﬂ(q%),
qF k kT +m 97 ar

o Convert the instant wave functions to the light cone wave
functions.
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TMDs in light-cone SU(6) quark-diquark model

@ Using the two-particle Fock state expansion with the light
cone wave functions, We could calculate the trace of the
correlator in our model.

¢ o Z 32m3 xP+
SN Ap
X wj?‘(xapLa)‘;l7X57pJJ)‘D)wJ-(X7pJJ)‘I;17X77pJJ)\D)
X TP, b, ATu(xP",p, ). (15)
@ Results in our model
uv 1 1
fi( )(XapL) = 327'('3 X(g@%""p%%
dv 1 1
A(x,p,) = Tom3 X 39V (16)
9 (x,p,) = —— x (LW — G2 W)
X, P = 303 §<Pv v —psWs),
(dv) . 1 15
h (X7 pL) - 71671'3 X §$0VWV7 (17)



The light cone SU(6) quark-diquark model

TMD:s in light-cone SU(6) quark-diquark model

h is denoted for the transverse TMDs, i.e., hq, hfl_, th.

¢v(¢ps): the wave functions in the momentum space.
Wp(D = V,S): the Melosh-Wigner rotation factor.

All the polarized TMDs have the same form for the expression,
but with different Melosh-Wigner rotation factors.

(X.///D + mq)2
(xAp + mg)? + p2.
2Mp(xAp + mq)
(xtlp + mg)? + p7
2M3
(xAp + mq)2 + Pi

For transversity :Wp(x,p,) = (18)

For longi — transversity :Wp(x,p,) = — (19)

For pretzelosity :Wp(x,p,) = —

(20)

) m2+p2 m2 4 p2
with .73 = "XPL + TPl



The light cone SU(6) quark-diquark model

@ Relation between polarized and unpolarized distributions.

uv uv 1 dv
Hp) = [00p0) = 2% cp)] Wetrop)

1 dv
_6)(1( )(vaJ_)WV(Xa pJ_)a
L (av
H(xp) = —3A™ (P )W(xpy). (21)

@ It is approximately satisfied. It is valid at an initial scale and
the evolution effect for the polarized distribution is partially
contained in the unpolarized distribution.

@ It will be used to calculate the polarized distribution. We can
adopt a parametrization for f; as an input, since we know
more about f; than the light-cone wave function. The only
change is the Melosh-Wigner rotation factors.
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Numerical approach to SSA

Drell-Yan process

A(Py)
0]

B(R)

Figure: Drell-Yan dilepton process.

o At COMPASS, 7p — pu*pu~ X, where p is longitudinal or
transversely polarized.



Numerical approach to SSA

Kinematical variables

@ Then the momentum transfer gives the invariant mass of the
lepton pair

G = (ki + ko)? = (T +07)2 = M2, (22)
o At extremely high energies, all the mass effects and the

transverse momenta are ignored,

2 2

=9 %CIO'FQL o= 4 ~do—a

! 2P1q \/g ’ 2 2P2q \E ’
M2 2q1_

T=—, XF=X—X~N ——. 23
S xr=xes (23)

@ We can build up the relation

1
x| = E(XF-F \/XF +47),
1
x2:§(—XF—|—\/X%—|—47'). (24)



Numerical approach to SSA

Cross section and SSA

@ The cross section is

do a? -
o i = 2.3 lA fifi
dQdx;dxad?qr 3q2{ (v)Flhh]
. 2(h - Bpor) - e Do
+5,.B(y)sin(2¢) x F| (h-pi7)(h-por) — P17 p2Thf'hﬁ] .

My M,

Sar B fsin(o + 0,) x AL "”hlm] +sin(3¢ — ¢s,)

4h - P1T(h “Por)’ — 2h - P27PiT1 " P21 — h- P1TP2T Ef'hf'T]]}

<7l 2M, V2

+o,
o? sm (2¢9)
= TqQ{A(Y)FUU + [Sar|B(y) sin(2¢) F,

+[S27|B()lsin(0 + 65) F ") +sin(30 — o) Fr ]}
+... (25)



Numerical approach to SSA

Cross section and SSA

@ We have used the shorthand

AY) = 5yt D Lt eeh),
Bly) = y(1-y) Eisurﬁe. (26)
Flofg]l = Z/dpleP2T52(P1T+P2T*QT)W(P1TaP2T)
X ?é(xlvplT)ga(X2vp2T) (27)

@ The single spin asymmetry is defined as

1 do(S) — do(-S
"SI do(S) + do(-S

)
)

(28)



Numerical approach to SSA

Weighted SSA

@ In practice, we multiply different weighting functions to
separate different azimuthal angle dependence asymmetry.

AW(¢’¢5) _ 2\/ d¢W 9, ¢S)[d0' — d0¢(l)]
ven) |SLm)l fo doldo=() + do=)]
FW(.95)
UL(T)
TFE. 29
Fuu (29)
@ We will calculate the following asymmetries by
X B( ) sm (2¢9)
Asm(Qq}) _ 7, 30
- Ay)Fuu (30)
sin(o+é
Asin(<f>+¢5) — LS) (31)
o Aly)Fou
sln (3p—ds)
oo s _ BOIFE )
ut A( )FUU .



Numerical approach to SSA

Parametrization

@ To make our result more reliable, we adopt CETQ
parametrization for fi(x) as an input. The transverse
momentum dependence is the Gaussian form for the
unpolarized distribution.

@ Using the relation (33) to obtain the polarized PDFs,

uv 1 dv
ARG IR A CY IR ZCI

h(UV)(XapL)
1 ()
_éfl (vaJ_)WV(XapJ_)7
L (av

K (ep) =~ (p)Wylx.pL). (33)

o We need the Boer-Mulders functions hi- for pion.
Z. Lu, B.-Q. Ma, PLB 615 (2005) 200;



Numerical approach to SSA

Kinematics

@ The COMPASS kinematics,

Vs =189 GeV, 0.1 <x; <1, 0.05< x» < 0.5,
4 < M <85 GeV, 0< gr <4 GeV (if gr is integrated).

e For the xg dependence, we only give the prediction for the
forward region xg > 0. Given a fixed xg, the range for M is
determined by Eq. (24) so that xj"" < x12(x2, M) < x{5>.

@ For the M dependence, given a fixed My, the range for xg is
determined by Eq. (24) so that x{5" < x12(xF, Mo) < x{"5™.

e For the g1 dependence, the range for M is
4 < M < 8.5 GeV, and the range for xf is determined by
Eq. (24) so that x}"" < x 2(xF, M) < x}"%*.
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sin 2¢p asymmetry
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Figure: The sin2¢ asymmetries for 7+p= — T~ X process at
COMPASS. Solid and dashed curves are the results for 7= and 7+
beams, respectively.
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sin(¢ + ¢s) asymmetry
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Figure: The sin(¢ + ¢s) asymmetries for 75p!" — pu* =X process at
COMPASS. Solid and dashed curves are the results for 7~ and 7"
beams, respectively.
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sin(3¢ — ¢s) asymmetry
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Figure: The sin(3¢ — ¢s) asymmetries for 7+ p! — 1+~ X process at
COMPASS. Solid and dashed curves are the results for 7~ and 7+
beams, respectively. Thin curves are the results where we make a cut off
on gt to enhance the asymmetry.




Numerical approach to SSA

Comment

@ All the results above rely on the Boer-Mulders functions in
pion, which is little known yet.

@ The sin2¢ and sin(¢ + ¢s) asymmetries are a few percent,
thus can be measured with a good accuracy.

@ The sin(3¢ — ¢s) asymmetry is a little small, less than 1%,
thus bring in difficulty in measuring it (Thick curves in Fig. 4).

@ In order to enhance the asymmetry, we make a cut-off on g,
1.0 < g7 < 2.0 GeV. The asymmetry could be magnified to a
few percent (Thin curves in Fig. 4), although we may suffer a
loss of data.

@ Results in large g region (g7 > 3 GeV) might be not so
reliable.



Summary

Outline

e Summary



Summary

Summary

: L 1L
We present our model calculation on hy;, h1, hi.

@ They can be probed through sin 2¢) asymmetry with
longitudinal polarized proton, sin(¢ + ¢s) asymmetry with
transversely polarized proton and sin(3¢ — ¢s) asymmetry
with transversely polarized proton in wp Drell-Yan process.

@ Boer-Mulders function for pion is needed.
@ The sin2¢ and sin(¢ + ¢s) asymmetry are a few percent.

@ The sin(3¢ — ¢s) asymmetry is a little small. We could make
a cut-off on g7 to enhance the asymmetry.

o We expect future experiments could promote our
understanding on the nucleon spin structure.
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